Synthesis of a Donor-Stabilized Silyl(silylene)iron Complex. Direct Observation of 1,3-Methyl Migration from Silyl to Silylene Ligands

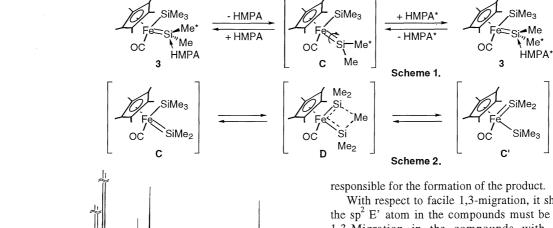
Keiji Ueno,* Kaori Nakano, and Hiroshi Ogino* Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77

(Received March 7, 1996)

Photolysis of $Cp*Fe(CO)_2SiMe_2SiMe_3$ ($Cp*=\eta-C_5Me_5$) in the presence of HMPA (HMPA = $(Me_2N)_3PO$) afforded a donorstabilized silyl(silylene)iron complex, $Cp*(OC)Fe(=SiMe_2\bullet HMPA)SiMe_3$, almost quantitatively. Variable temperature ¹H NMR investigation for solutions of the trimethylsilyl(dimethylsilylene)iron complex allowed the direct observation of 1,3-methyl migration from the silyl ligand to the silylene ligand. It is proposed that 1,3-migration may be a general phenomenon which prevails among compounds with $R_aE-M=E^*R_m$ arrangement.

It has been known for many years that transition metal complexes can catalyze the redistribution of substituents on silicon atoms in organosilicon compounds.^{1,2} Although the redistribution is considered to be induced by the coordination of the organosilicon compounds to the metal complexes, mechanistic details of the redistribution processes had been long unknown. 1,3-Substituent migration was proposed by Pannell's group³ and us⁴ to occur from silyl to silylene ligands: Photolysis of a disilanyliron complex, $CpFe(CO)_2SiMe_2SiMeR_2$ (1: $Cp = \eta - C_5H_5$; R = Me, Et, Ph), afforded a mixture of monosilyliron complexes, $CpFe(CO)_2SiMe_{3-n}R_n$ (2: n = 0 - 2), with scrambling of alkyl and aryl groups on the silicon atoms (eq 1). The reaction was proposed to proceed via the formation of a silyl(silylene)iron intermediate A and subsequent rapid intramolecular 1,3-substituent migration from the silyl group to the silylene ligand to form the intermediate B. Quite recently, it was supported by several experimental observations⁵ that the mechanism is operative in the transition metal catalyzed redistribution reactions of organosilicon compounds. However, no direct observation of the 1,3-migration has been made.

Here we report the synthesis of the first isolable external base-stabilized silyl(silylene)iron complex Cp*(OC)Fe(=SiMe $_2$ ·HMPA)SiMe $_3$ (3: Cp*= η -C $_5$ Me $_5$) and direct observation of 1,3-methyl migration from the silyl group to the silylene ligand in complex 3.


Irradiation of a toluene- d_8 solution containing a disilaryliron complex Cp*Fe(CO)₂SiMe₂SiMe₃ (4) and 3.5 eq of HMPA in a Pyrex NMR sample tube with a 450 W medium pressure mercury arc lamp afforded complex 3 almost quantitatively. The ²⁹Si NMR spectrum of the reaction mixture at 230 K showed a doublet

peak and a singlet peak at δ 116.2 ($J_{SiP} = 31.4$ Hz) and 34.7 ppm, respectively. The remarkable downfield shift of the former signal compared to those for the precursor complex 4 (δ 14.6 and -12.2 ppm) and its doublet pattern clearly indicate the formation of a silylene ligand coordinated by a HMPA molecule, while the chemical shift of the latter signal of 3 is comparable with those for (alkylsilyl)iron complexes CpFe(CO)₂SiR₃ (R = alkyl). The ¹H NMR spectrum of the reaction mixture at 250 K (Figure 1, bottom) shows two doublet peaks for the free and the coordinated HMPA at δ 2.40 and 2.24 ppm, respectively, a singlet peak for Cp* ligand at δ 1.97 ppm, and three peaks for SiMe groups at δ 0.71, 0.69, and 0.68 ppm with the relative intensity ratio of 1:3:1. The SiMe signal at δ 0.69 ppm is assignable to the SiMe, ligand while the others are to the diastereotopic methyl groups of the HMPA-coordinated SiMe, ligand. These NMR data strongly support the formulation of the compound Cp*(OC)Fe(=SiMe₂·HMPA)SiMe₃ (eq 2). Although complex 3 was isolated as yellow crystals, we could not obtain satisfactory results of elemental analysis for complex 3 due to the extreme sensitivity toward air and moisture.

The silyl(silylene)iron complex **3** exhibits dynamic processes (Figure 1). As the temperature is raised from 250 K, two singlet peaks for the diastereotopic methyl groups in the SiMe₂ ligand broaden, coalesce, and become a singlet peak at 280 K. Two doublet signals for the free and the coordinated HMPA also broaden, coalesce, and finally become a sharp doublet peak above 280 K. These spectral changes suggest that the exchange between the diastereotopic methyl groups in the SiMe₂ ligand occurs concurrently with exchange of the coordinated HMPA molecule with the free HMPA molecule in solution.

Another spectral change is observed above 280 K: The two singlet signals for the SiMe₂ and SiMe₃ ligands gradually broaden, then coalesce at 318 K, and become a sharp singlet peak with 15 H intensity at 360 K. This spectral change clearly demonstrates that the 1,3-methyl migration from SiMe₃ to SiMe₂ ligands takes place in the NMR time scale.

A proposed mechanism is given in Scheme 1 for the concurrent occurrence of the exchange between the diastereotopic methyl groups in the SiMe₂ ligand and that between the coordinated and free HMPA molecules: The dissociation of the coordinated HMPA molecule from 3 gives a base-free silyl(silylene)iron intermediate C. Rotation of the silylene ligand and re-coordination of a free HMPA molecule result in the methyl group exchange in the SiMe₂ ligand accompanied by the inversion of the silicon center, and the exchange between the coordinated and free HMPA

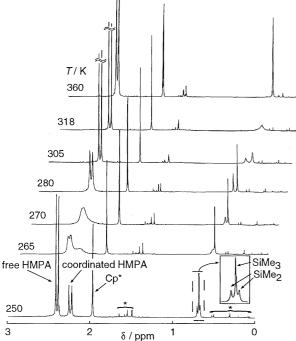


Figure 1. Variable temperature 300 MHz ¹H NMR spectra of 3 measured in toluene- d_8 . *; Impurity.

·molecules.9

Another fluxional behavior observed at higher temperature range (280 - 360 K) may be explained by the mechanism shown in Scheme 2: 1,3-Methyl migration from the SiMe, group to the electron-deficient silvlene ligand in the intermediate C takes place to give intermediate C' which proceeds most likely via a symmetric transition state (or intermediate) D. Recombination of an HMPA molecule to the silvlene ligand in C' completes the process.

1,3-Migration occurs not only in silyl(silylene) transition metal complexes with the R₃Si-M=SiR₂ arrangement but also in organosilicon compounds containing an electron-deficient silicon atom such as silenes, $(R_3Si)_2C=SiR_2$, and cationic silyl compounds. 11 It has also been proposed that facile 1,3-migration occurs in compounds with the $R_nE-M=E'R_m$ arrangement, where the combination of elements E and E' (or E' and E) are Si and Si, ³⁻⁵ Ge and Ge, ^{12, 13} Si and Ge, ^{12, 14} Ge and Sn, ¹⁵ and Sn and P, ¹⁶ respectively. ¹⁷ Photolysis of Fe(CO)₄{P(OEt)₃} in the presence of HSi(NMe₂)₃ was reported to give {P(OEt)(NMe₂)₂}(CO)₂Fe=Si(OEt)₂ NHMe₂. 13-Substituent migration between the silicon and phosphorous atoms might be

With respect to facile 1,3-migration, it should be noted that the sp² E' atom in the compounds must be electron deficient. 1,3-Migration in the compounds with the R_nE-M=E'R_m arrangement may be general and prevailing phenomena observed in a variety of organo- and inorganometallic compounds containing group 14, 15, and probably 13 elements as E (and E'). M means not only metal in complexes but also carbon or possibly other main group elements.

This work was supported by the Grants-in-Aid for Scientific Research (Nos. 07740516 and 05236104) from the Ministry of Education, Science and Culture of Japan.

References and Notes

- M. D. Curtis and P. S. Epstein, Adv. Organomet. Chem., 19, 213 (1981).
- U. Schubert, Angew. Chem., Int. Ed. Engl., 33, 419 (1994)
- K. H. Pannell, J. Cervantes, C. Hernandez, J. Cassias, and S. Vincenti, Organometallics, 5, 1056 (1986); K. H. Pannell, J. M. Rozell, Jr., and C. Hernandez, J. Am. Chem. Soc., 111, 4482 (1989); K. H. Pannell, L.-J. Wang, and J. M. Rozell, Organometallics, 8, 550 (1989).
- H. Tobita, K. Ueno, and H. Ogino, Chem. Lett., 1986, 1777; H. Tobita, K. Ueno, and H. Ogino, Bull. Chem. Soc. Jpn., 61, 2797 (1988); K. Ueno, H. Tobita, and H. Ogino, Chem. Lett., 1990, 369.
- G. P. Mitchell, T. D. Tilley, G. P. A. Yap, and A. L. Rheingold, Organometallics, 14, 5472 (1995); D. C. Pestana, T. S. Koloski, and D. H. Berry, Organometallics, 13, 4173 (1994); Y. Tanaka, H. Yamashita, and M. Tanaka, Organometallics, 14, 530 (1994); K. Tamao, G.-R. Sun, and A. Kawachi, J. Am. Chem. Soc., 117, 8043 (1995).
- The formation of a base-stabilized silyl(silylene)iron complex has been observed in solution but its isolation has not been reported. K. M. Horng, S. L. Wang, and C. S. Liu, Organometallics, 10, 631 (1991).
- B. J. Aylett, Adv. Inorg. Chem. Radiochem., 25, 1 (1982). 13 C NMR data for the reaction mixture: (toluene- d_8 , 250 K) δ 221.6 (CO), 89.1 (C_5 Me₅), 36.6 (free HMPA), 36.4 (coordinated HMPA), 13.8, 13.0 (SiMe₂), 12.0 (C_5Me_5), 10.9 (SiMe₃).
- An alternative mechanism may involve an $S_{N}2$ attack of a free HMPA molecule to the HMPA-coordinated silylene ligand accompanied by inversion of the silylene ligand.
- 10 N. Wiberg, J. Organomet. Chem., 273, 141 (1984); N. Wiberg, G. Wagner, J. Riede, and G. Müller, Organometallics, 6, 32 (1987).
- C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organomet. Chem., 188, 179 (1980); C. Eaborn, P. D. Lickiss, and N. A. Ramadan, J. Chem. Soc., Perkin, Trans. 2, 1984, 267.
- 12 K. H. Pannell and S. Sharma, Organometallics, 10, 1655 (1991).
- 13 J. R. Koe, H. Tobita, T. Suzuki, and H. Ogino, Organometallics, 11, 150 (1992)
- 14 L. K. F. Figge, P. J. Carroll, and D. H. Berry, Organometallics, 15, 209 (1996).
- 15 H. Sharma and K. H. Pannell, Organometallics, 13, 4946 (1994).
- Y. Yamaguchi, H. Nakazawa, and K. Miyoshi, 42nd Symposium on Organometallic Chemistry, Japan, Hiroshima, Abstr., A121 (1995).
- 17 It should be noted that there is a modified mode of the 1,3-migration between sulfur atoms (group 16 element): K. Tatsumi, Y. Sekiguchi, A. Nakamura, R. E. Cramer, and J. J. Rupp, J. Am. Chem. Soc., 108, 1358
- 18 U. Bodensieck, P. Braunstein, W. Deck, T. Faure, M. Knorr, and C. Stern, Angew. Chem., Int. Ed. Engl., 33, 2440 (1994).